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Abstract

[Xu et al. 2009] introduce a graph prediction method that is accurate
but slow. My project investigates faster methods based on theirs that
are nearly as accurate. If we haveN nodes, their method isO(N3),
whereas mine are O

(
O3 +O2P

)
if we have O observations and

P predictions to make.

1 Introduction

Suppose we have a graphG, and we are interested in a certain quan-
tity associated with each node.Suppose we observe this quantity for
some of the nodes. We would like to use the graph structure to
estimate the quantity on the rest of the nodes.

For example, G could be a social network, and we could be inter-
ested in the politics of the members. We might be able to survey
some of the members. We would like to be able to use the survey
results to estimate the politics of the other members.

[Xu et al. 2009] use a method called kriging to do this. Kriging is
a spatial smoothing technique from geostatistics; we will explain
how [Xu et al. 2009] apply it to graphs in Section 2. [Xu et al.
2009] show that kriging generalizes many older graph smoothing
methods. Their results show that kriging is better able to use the
information from the graph, and is thus more accurate.

The approach of [Xu et al. 2009], however, has a serious problem -
it is simply too slow to scale to large data sets. If G has N nodes,
their method is O(N3). This makes it infeasible for the problems
we are interested in, which can have N in the millions.

This project tries to find faster ways to do the kriging. I looked at
two methods. The first simply skips an expensive SVD step in the
original method. The second is a new regression approach that is
actually different from the original kriging method. The relation-
ship between the regression approach and the original method is
roughly analogous to that between logistic regression and LDA -
the regression approach is less model-centric (though here it actu-
ally uses a different model). Finally, I looked at ways to combine
the two methods.

The resulting methods perform well in simulations, usually not
much worse than the original kriging. They are also much faster. If
we haveO observations and we needP predictions, the first method
is O(O3 +O2P ), and the second isO(O2 +OP ). Since O � N
and sometimes P � N as well, these can be much faster than the
original method. They can even be applied to huge problems where
the original method is totally infeasible.

2 Graph Kriging

In this section, I will briefly explain the method of [Xu et al. 2009].
Suppose the graph G has node-measurements X . We observe
Xo = Xi, i ∈ B and want to predict some or all of the rest. Sup-
pose we use G to create similarities between the nodes - sij is the
similarity between nodes i and j. We want to use these similarities
to help our predictions.

We have to assume something about the relationship between the
nodes, or this problem is impossible. [Xu et al. 2009] treat the sim-
ilarities like distances, and use a geostatistics model. They model

X as multivariate normal, where the correlations are a function of
the similarities:

cor(Xi, Xj) = f(sij).

For simplicity, suppose that marginally, each Xj ∼ N (0, 1). Let
Σ = f(S) be the covariance matrix, partitioned as

Σ =

[
Σoo Σom

Σmo Σmm

]
for the observed and missing elements. Then the Bayes estimator
of Xm = Xi, i 6∈ B is

E(Xm|Xo) = ΣmoΣ−1
oo Xo. (1)

So if we know the function f that takes covariances into similarities,
we can make our predictions.

If we don’t assume normality, and simply assume that cov(X) =
Σ = f(S), we can still use the estimator in equation 1. Instead
of being the Bayes estimator, though, it becomes the best linear
estimator ofXm based onXo. So although kriging uses the normal
model, we can relax that assumption substantially and still get good
estimators.

There are a few more complications that come from measurement
error and estimating the variances, but I will ignore them for this
project, since they don’t really matter for my purposes.

[Xu et al. 2009] show that many graph smoothing methods can be
viewed in this light, with specific choices of similarities and corre-
lation functions f . They obtain substantial improvements by fol-
lowing the geostatistics approach. Instead of using a fixed f , they
fit f using the data. Their procedure is particularly simple in our
simplified situation. First, they find the empirical correlations ρ̂ij

of the observed data, here XiXj for i, j ∈ B. They then smooth
ρ̂ij as a function of sij using splines. This gives an estimated cor-
relation function f̂ . Since we have

(
O
2

)
empirical correlations, we

usually have enough data to fit f̂ quite well.

They now use f̂ to get Σ̃ = f̂(S). Since Σ̃ may not be positive
definite, they use an SVD of Σ̃ to force it to be positive definite
(and possibly force it to be low rank). Finally, they plug this new Σ̂
into equation 1 to get an estimator of Xm.

This method turns out to be substantially more accurate than older
smoothing methods [Xu et al. 2009] consider. The kriging approach
is better able to take advantage of the similarities, since it does not
make assumptions about f , it does not suffer when assumption on
f are wrong. Its flexibility allows it to fit the more complicated
similarity relationships that occur in real data.

2.1 Problems

Unfortunately, this method has some speed problems that make it
impossible to apply to large data sets. The SVD of Σ̃ takes O(N3)
time. Since N is often very large, this is prohibitively slow. With
careful estimates of f̂ that produce a sparse Σ̃, this can be reduced,
but no matter what we do, we still have to take the SVD of a very
large matrix.

Another problem is that we cannot get predictions on a small sub-
set of the missing nodes. If we decide we only need predictions for



certain nodes Xp, we still have to take that SVD, so we end up do-
ing the same expensive step as if we got predictions for all the Xm.
This is inconvenient, since we may often want quick predictions for
a small number of interesting nodes.

Finally, if we get new data, we have to re-fit the whole model. The
spline fit of f̂ can be updated fairly quickly, but in general, every
element of Σ̃ will change, so we will need a new SVD. This is
expensive, and undesireable. Even if we could do such a big SVD
once, it is unlikely we can afford to do it every time we get new
data.

These problems make [Xu et al. 2009]’s kriging method unsuitable
for large problems. We can, however, make faster methods based
on [Xu et al. 2009]’s work.

3 Faster Graph Kriging

In this section, I’ll explain two methods I used to make kriging-like
predictions much more quickly.

3.1 Using a Raw Covariance Estimate

The first method is very simple. Instead of computing the SVD of
Σ̃ and forcing it to be positive definite, just force the observation
submatrix Σ̃oo to be positive definite. Then plug this new Σ̂ into
equation 1 to get predictions.

This saves a lot of computation, since we have to take the SVD of
an O×O matrix instead of an N ×N one. We can save even more
time if we only need predictions for a subset of the missing values -
all we have to do is use Σ̃po = ˆcov (Xp, Xo) in equation 1 instead
of Σ̃mo. If we need P � N predictions, this can be much faster.
The method isO(O3 +OP ), much faster than theO(N3) original
method. It is worth noting, however, that this still has the updating
problem of the original method.

We will see in simulations that this method works well, but can be
very erratic. One reason this happens because the SVD step of the
original algorithm sets all the negative eigenvalues of Σ̃ to 0. In
some cases, this removes a substantial fraction of the energy of the
matrix, and therefore regularizes Σ̃op. By only forcing Σ̃oo to be
positive definite, we lose the benefits of this step. Another reason
is instability when taking the inverse of Σ̃oo - if the matrix is near
singular, errors are greatly amplified.

3.2 A Regression Approach

We can find another method by taking a completely different ap-
proach. Kriging gives us predictions that are linear in the observa-
tions. Suppose we predict Xj . Then the coefficients of the obser-
vations are ΣjoΣ−1

oo . We can use the property to fit the coefficients
directly.

First, though, we need to understand how the regression coefficients
relate to the similarities. We expect that if Xi is similar to Xj , that
is, if sij is large, then the coefficient of Xi is large when predicting
Xj . That, however, is not true. The coefficients are not functions of
similarity. Instead, the covariance matrix Σ is a function of similar-
ity. The inverse in Σ−1

oo mixes up the covariances, so the coefficents
are not a function of the similarities. But since Σjo is a function
of the similarities, the coefficients ΣjoΣ−1

oo will be related to the
similarities. In particular, if Σoo is close to the identity - if the ob-
servation nodes are not highly correlated with each other, then the
coefficients will be close to a function of the similarities.

We can use this to create a prediction method. Instead of model-
ing the covariance as a function of the similarities, we model the
coefficients. That is, our prediction for Xj is

X̂j =
∑
i∈B

β(sij)Xi

where β(·) are the coefficients as a function of similarities.

We can fit this model by regression. We regress each observation
on the others, so we model

Xi′ =
∑

i∈B,i6=i′

β (sii′)Xi + εi′

for i′ ∈ B. To fit the function β, we expand it in K spline basis
functions,

β(s) =

K∑
i=1

ckψk(s).

This means that we have to fit the regression

Xo =

(∑
i

∑
i 6=i′,i′∈B

∑
k

ckψk(sii′)Xi′ei

)
+ ε

=
∑

k

ck

(∑
i

∑
i 6=i′,i′∈B

ψk(sii′)Xi′ei

)
+ ε

since ψk, sii′ are known, we can fit ck by regressing Xo on the

predictor matrix
(∑

i6=i′,i′∈B
ψk(sii′)Xi′

)
i,k

.

This is fast to fit. Forming the predictors takes O(O2) time, and
the regression takes O (O) time (since the Gram matrix is K ×K,
and I am taking K bounded here). So fitting β̂ take O(O2) time.
Forming the predictions takesO(OP ) time, so the total complexity
is O(O2 +OP ), even faster than the shortcut covariance method.

The regression approach also solves our other problems. It is easy
to predict only for the nodes we need predictions for. It can also
be updated easily when we get new observations, using regression
updating formulas.

The regression method is fast, and it performs quite well in simula-
tions. The main drawback seems to be that the regression method
is more sensitive to misspecified similarities. If the similarity is
chosen badly, we may need many degrees of freedom to fit the co-
efficient function, and this can make our results less stable.

3.3 Blending and possible extensions

Perhaps the best thing about the regression approach, however, is
its versatility. We can use our full array of regression tricks to build
the best model for each dataset. Using special splines, for example,
we can force β(s) ≥ 0, or force β(s) = 0 for s smaller than
some threshhold s0. These modifications could be of interest if we
need nonnegative coefficients or if we want to identify high-value
predictors.

The flexibility of the regression lets us combine the regression ap-
proach with other methods. Here, I combined the regression with
the shortcut covariance method to make a more accurate method
that is still fast.

Our model is

Xo =
∑

k

ck

(∑
i

∑
i6=i′,i′∈B

ψk(sii′)Xi′ei

)
+ ck+1Ê + ε



where
Êi = Ê (Xi|Xo,−i)

is the vector of leave-one-out shortcut covariance predictions.

If we calculate Ê naively, we slow down the method to
O
(
O4 +OP

)
, but we can approximate Ê more quickly. To

predict Xi based on Xo,−i, we need to calculate the coefficients
Σo

i,−i

(
Σo
−i,−i

)−1
for each i. Suppose we fit the covariance curve

using all the data, even including the ith case for its own coeffi-
cients. This will not change f̂ much since it adds O − 1 empirical
correlations to the (O − 1)2 that would normally be used.

If we do this, then we can use the Sherman-Morrison-Woodbury
formula to save a lot of work. Suppose we want to calculate(
Σo
−1,−1

)−1
. We have

I = Σ−1
o Σo

=

(
Σ−o

11 Σ−o
1,−1

Σ−o
−1,1 Σ−o

−1,−1

)(
Σo

11 Σo
1,−1

Σo
−1,1 Σo

−1,−1

)
where for example Σ−o

−1,−1 = (Σo)−1
−1,−1. This implies that

Σ−o
−1,1Σo

1,−1 + Σ−o
−1,−1Σo

−1,−1 = I

and hence

Σo
−1,−1 =

(
Σ−o
−1,−1

)−1 (
I − Σ−o

−1,1Σo
1,−1

)(
Σo
−1,−1

)−1
=

(
I − Σ−o

−1,1Σo
1,−1

)−1
Σ−o
−1,−1.

We can compute Σ−1
o once and for all - this gives us Σ−o

−1,−1 -
and use the Sherman-Morrison-Woodbury formula to quickly in-
vert I − Σ−o

−1,1Σo
1,−1. This means we can form the shortcut co-

variance predictor in O(O3) time. When we predict, we have
to form the shortcut predictor again, which takes O

(
O3 +O2P

)
time. This means the combined algorithm takes O

(
O3 +O2P

)
time - the regression time is dominated by the shortcut covariance.
But this combined method is still much faster than the original krig-
ing method.

4 Simulation Results

I will now explore the performance of the faster graph predic-
tion methods and compare them to kriging. To keep implemen-
tations simple, I stayed in the simple case where Xj ∼ N (0, 1)
marginally. This makes the kriging method simple, as we saw in
Section 2.

4.1 Accuracy Comparison

I used a few different simulation scenarios to test the methods.
Since the original kriging method doesn’t scale to large problems,
I used N = 100. I used the following covariance and similarity
combinations:

1. Σij = ρ|i−j|, ρ variable, with similarity |i− j|

2. Σij = ρ|i−j|, ρ variable, with similarity exp (− |i− j|)

3. Σij = (1− α) ρ|i−j| + αWij , where W is a certain random
correlation matrix, and the similarity is exp (|i− j|)

4. Σij = ρsij , where sij are similarities made from the UK
Universities Web Links dataset used by [Xu et al. 2009] and
W is a certain random correlation matrix.

0.3 0.4 0.5 0.6 0.7 0.8 0.9

5
10

15
20

Performance of Methods

rho

R
is

k 
R

at
io

 to
 B

ay
es

regr
orig
short
comb

Figure 1: Average performance relative to Bayes for the methods,
where Σij = ρ|i−j| and sij = exp (|i− j|).

To measure accuracy, I generated X ∼ N (0,Σ) from the given Σ
and randomly held out half its entries. I then found∥∥X̂m − E (Xm|Xo)

∥∥2

to measure the difference between each method’s estimate and the
Bayes estimate.

The easiest case is the second, Σij = ρ|i−j| with similarity
exp (− |i− j|) . The covariance is a nice function of the simi-
larities and there is no noise. Figure 1 shows the performance of
each estimator relative to the Bayes estimator in this case.

Surprisingly, the original kriging method and the shortcut covari-
ance method do not perform the best in this case, even though they
are fitting the true model. They behave erratically, and even at their
best do not outperform the regression or combined methods. Both
the regression and the combined method perform well, reasonably
close to the Bayes risk (usually within a factor of 2), although the
combined method becomes unstable on occasion.

It seems like a large part of this is numerical instability - the in-
verse in equation 1 causes both methods problems, in particular the
shortcut method. This rarely carries over to the combined method
as well. If we look at the median inefficiency instead, Figure 2,
the results are different - the methods perform better, and the gap
between them is smaller - note the much smaller scale.

From now on, I’ll compare the methods using median inefficiencies
- the instability we saw in the previous scenario is seen throughout,
and using mean inefficiencies makes it hard to see anything be-
yond the instability. A real implementation of the covariance-based
methods would include measurement error, and this would numeri-
cally stabilize the methods.

The regression method has a harder time adapting to different sim-
ilarities, and this can be seen if we use sij = |i− j| instead. The
results are in Figure 3. Now the original and shortcut methods are
the best, and the regression is the worst. The combined method is
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Figure 2: Median performance relative to Bayes for the methods,
where Σij = ρ|i−j| and sij = exp (|i− j|).

close to regression for small ρ, but when ρ rises and regression per-
forms worse, the combined method is able to do about as well as
the shortcut and original methods.

We can also assess the methods when the covariance is not actually
a function of the similiarity. The third scenario examines such a
case - the true similarity is contaminated with noise. Here, I took
W to be a random correlation matrix from 2N samples of aN (0, I)
random variable. I considered ρ = 0.25, 0.5, 0.9 and α ∈ [0, 0.5].
The results are in Figures 4, 5 and 6. We can see that the meth-
ods perform pretty similarly, with the original and regression doing
slightly better, except for ρ = 0.9. There is probably not too much
to choose between the methods on this front.

As a final test, I used the UK Universities Web Links dataset to
create similarities. This tests the methods on a similarity structure
from real data, even if the response is still artificial. I took the link
matrix W and set

A = W ′ +W

diag(A) = max(A) + 1

S = log (A+ 1)

I did this because the link matrix had mostly small entries and a few
very large entries, and its diagonal was 0. I then used

Σij = ρ
10(max(S)−sij)
ij

for the covariance matrix, after making it positive definite. Figure 7
has the results. Surprisingly, all the methods do quite well, though
the original and shortcut method are nearly as good as the Bayes
estimator (the medians were - both methods showed their usual in-
stability).

To summarize the accuracy results, the regression method is much
stabler than the original and shortcut methods, and somewhat sta-
bler than the combined method. All of the methods perform rea-
sonably similarly aside from this instability. The regression method
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Figure 3: Median performance relative to Bayes for the methods,
where Σij = ρ|i−j| and sij = |i− j|.
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Figure 4: Median performance relative to Bayes for the methods,
where Σij = (1− α) ρ|i−j| + αW and sij = exp (− |i− j|).
Here ρ = 0.25.
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Figure 5: Median performance relative to Bayes for the methods,
where Σij = (1− α) ρ|i−j| + αW and sij = exp (− |i− j|).
Here ρ = 0.5.
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Figure 6: Median performance relative to Bayes for the methods,
where Σij = (1− α) ρ|i−j| + αW and sij = exp (− |i− j|).
Here ρ = 0.9.

0.3 0.4 0.5 0.6 0.7 0.8 0.9

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

Performance of Methods

alpha

R
is

k 
R

at
io

 to
 B

ay
es

regr
orig
short
comb

Figure 7: Results for the UK University Web Links dataset based
simulations.

has a little trouble with misspecified similarities, but adapts a little
better when the covariance is not actually a function of the similari-
ties. The combined method is usually in between the regression and
shortcut methods, closer to the more accurate one. These simula-
tions suggest that the faster methods in this project do not sacrifice
much accuracy, and in many situations can be fully as accurate as
the original, much slower, method.

4.2 Speed Comparison

The methods each took about the same amount of time in each sce-
nario. I timed how long they took for each N . I considered a few
scenarios. I either held out half the data or fixed 50 observations,
and I either predicted all the missing values or predicted a fixed 50.
The combinations gave four scenarios, with times in Table 1.

The regression and shortcut methods are the fastest, and the com-
bined method is a bit slower. All three are much faster than the
original method. They seem to be more dependent on the number
of observations than the number of predictions, which is we would
expect. The methods scale very well - their advantage over the orig-
inal method grows rapidly with N .

There is, however, one exception. The combined method is actually
quite a bit slower than the original if we hold out half the data. This
is because making the leave-one-out shortcut predictor for each ob-
servation can be relatively expensive; if there are not far fewer ob-
servations than nodes, the method’s other advantages do not make
up for this. On large datasets it is probably better to divide the
data into folds and leave an entire fold out when predicting the rest.
This would avoid repeating the shortcut method for each observa-
tion, just once for each fold. This method would take roughlyNfold

times as long as the regression and the shortcut method combined,
which would still be much faster than the original method.

It seems like the speedup from skipping the SVD step is quite large.
Decreasing the number of observations helps more than decreasing
the number of predictions required, at least at this small scale. This



Original Shortcut Regression Combined
Hold half, Predict all: N = 100 0.03 0.01 0.03 0.05

N = 575 0.97 0.31 0.12 1.58
N = 1050 4.36 1.16 0.29 8.99
N = 1575 12.24 2.89 0.56 27.43
N = 2000 28.81 6.24 1.02 64.2

50 Obs, Predict all: N = 100 0.03 0.01 0.03 0.05
N = 575 0.74 0.03 0.05 0.07
N = 1050 3.48 0.05 0.03 0.08
N = 1575 9.86 0.07 0.04 0.10
N = 2000 22.30 0.09 0.04 0.13

Hold half, Predict 50: N = 100 0.03 0.01 0.03 0.05
N = 575 1.00 0.25 0.10 1.54
N = 1050 4.48 0.90 0.25 8.56
N = 1575 12.77 2.15 0.50 25.34
N = 2000 25.94 4.03 0.77 58.84

50 Obs, Predict 50: N = 100 0.02 0.01 0.02 0.04
N = 575 0.86 0.01 0.02 0.05
N = 1050 4.40 0.01 0.02 0.05
N = 1575 10.53 0.01 0.03 0.05
N = 2000 21.94 0.02 0.02 0.14

Table 1: Time taken (seconds) by the various methods.

suggests that the methods will scale to situations where observa-
tions are sparse and we need many predictions.

5 Conclusion

This project has explored fast and accurate graph prediction meth-
ods based on the kriging method of [Xu et al. 2009]. There were
three methods - a shortcut kriging method, a regression-type ap-
proach, and a combination. They all performed roughly as well as
the original method in simulations, and were much faster - the com-
bination method can be slow if there are many observations and we
use the leave-one-out approach. The original method and the short-
cut method were very unstable, but this is an artifact of having no
measurement error, and would not be an issue for a practical imple-
mentation. Despite their drawbacks, these methods are for the most
part very fast and sacrifice little accuracy. This makes them useful
starting points if we are faced with a graph prediction problem that
is too big for the original approach to tackle.

6 Note

My original project idea was different - given the kriging, how can
we pick the best nodes to observe data on? It turns out that this
problem is essentially the same as subset selection for regression.
My idea was to use submodular functions to approximately opti-
mize. This is in fact a very good idea, so good that Andreas Krause
and other people from Carnegie-Mellon have explored it quite thor-
oughly [Krause et al. 2008b; Krause et al. 2008a]. Instead of cover-
ing the same ground, I decided to work on something new. I talked
to Borja about this change when I submitted the milestone, and he
approved.

I was originally going to summarize their results here, like I said on
the milestone, but since I’m running short on time, I will just refer
to their papers.
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